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We identified 75 dehydration-responsive element-binding (DREB) protein genes in Populus trichocarpa. We analyzed gene
structures, phylogenies, domain duplications, genome localizations, and expression profiles. The phylogenic construction suggests
that the PtrDREB gene subfamily can be classified broadly into six subtypes (DREB A-1 to A-6) in Populus. The chromosomal
localizations of the PtrDREB genes indicated 18 segmental duplication events involving 36 genes and six redundant PtrDREB
genes were involved in tandem duplication events. There were fewer introns in the PtrDREB subfamily. The motif composition of
PtrDREBwas highly conserved in the same subtype.We investigated expression profiles of this gene subfamily fromdifferent tissues
and/or developmental stages. Sixteen genes present in the digital expression analysis had high levels of transcript accumulation.The
microarray results suggest that 18 genes were upregulated. We further examined the stress responsiveness of 15 genes by qRT-PCR.
A digital northern analysis showed that the PtrDREB17, 18, and 32 genes were highly induced in leaves under cold stress, and the
same expression trends were shown by qRT-PCR. Taken together, these observations may lay the foundation for future functional
analyses to unravel the biological roles of Populus’ DREB genes.

1. Introduction

Environmental stresses, such as drought, high salt, and
low temperature, have adverse effects on plant growth and
development. During evolution, plants established physio-
logical and metabolic defense system responses to adverse
conditions. In essence, stress induced the expression of
specific genes and their products play a role in the plant’s
stress defense mechanism. Transcription factors (TFs) can
upregulate a set of genes under their control by interacting
with cis-elements present in the promoter region of targeted
genes. The products act as regulatory proteins, consequently
enhancing the stress tolerance of the plant. The dehydration-
responsive element-binding (DREBs) protein TFs play an
important role in regulating plant growth and the response
to external environmental stresses.

In the plant kingdom, DREB is a large subfamily belong-
ing to the APETALA2/ethylene-responsive element-binding
protein (AP2/EREBP) family.DREB genes contain the highly
conserved AP2/ERFDNA-binding domain [1].TheAP2/ERF

domains, which consist of 50 to 60 amino acids, are found
in proteins involved in a variety of regulatory mechanisms
throughout the plant life cycle. The DREB subfamily play
an important role in the resistance of plants to abiotic
stresses by recognizing the dehydration-responsive element
(DRE), which has a core motif of A/GCCGAC [2], and some
members of this gene subfamily recognize the cis-acting
element AGCCGCC, known as the GCC box [3]. The DREB
subfamily TFs have been identified in various plant species,
includingmangrove [4], soybean [5], and potato [6].The roles
ofDREB proteins in the plant’s response to abiotic stress have
also been extensively documented [7]. In the genomes of
Arabidopsis [3], Vitis vinifera [8], and rice [9], 56, 36, and 57
AP2/ERF-related proteins, respectively, are encoded. Genetic
and molecular approaches have been used in combination
to characterize a series of DREB family regulatory genes
involved in many different pathways, including genes related
to cold, drought, high salinity, heavymetals, and abscisic acid
(ABA) [4].
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Table 1: The primers of DREB genes were generated in Primer 5 for
qRT-PCR.

Name Sequence (5-3)
PtrDREB4F GTATTGAGGGGAGAAATGGATGG
PtrDREB4R CATATCATGGTCGGAAGACAAGC
PtrDREB16F AATCTTGCTACCACCACATCACAGT
PtrDREB16R ATGCCTCCGCCTGACTCCTCTAT
PtrDREB17F ACTCTGGCTTGGCACATTTGAC
PtrDREB17R GGCTTGTATTCGCCGATGTAGGA
PtrDREB18F GGCTCCAAAACCTGTCCCTATGA
PtrDREB18R CCCAATGTCTCTGCCTCACTCCT
PtrDREB19F GAGGAGGCGGCTTTGGCTTAT
PtrDREB19R AACCGAGGAATGGAGAGGCTTG
PtrDREB28F CAGTCAAAAAAGTTCAGAGGGGT
PtrDREB28R CTCTTCTGCTGTTTCAAATGTGC
PtrDREB30F GCATGTAACGGTAGAAAGGAGGGGG
PtrDREB30R AGATTGGCGGTAGATCAAGAGTG
PtrDREB32F AGAAGGAAGTCATCAACAAGGGG
PtrDREB32R ATTTGGTGCAGGCTGAGGCAA
PtrDREB38F GTGAGAGGCAATACAAGGGGA
PtrDREB38R CGCTACTGGTGTTGAGTAGGAA
PtrDREB51F TGACCCGACCTCAAACTCTCCAG
PtrDREB51R TCAGACACCCATTTCCCCCACCT
PtrDREB55F GATTCTCAACCAACCAAAACCTC
PtrDREB55R GGCTCTCTAATTTCAGACACCCA
PtrDREB60F GAAGAAGAACAAAGCGGGAAGGA
PtrDREB60R CATTTCTGGGCTCTTGAAGGTCC
PtrDREB61F GCAGGAAGGAAGAAGTTCAAGGA
PtrDREB61R GGCTAGTGAAGGTCCCTAACCAAAT
PtrDREB62F TCTTCTTTCTCCGATAGCAGCAC
PtrDREB62R CACCCTATTGTTACCATTCCTCT
PtrDREB68F TCTAAGCGAAACCAAGACCCGAA
PtrDREB68R TTTGCCCCATTGACGCATTCT
ActinF CATCAAAGCATCGGTGAGGTC
ActinR GTTGCCATCCAGGCTGTCC

The characterization of the DREB subfamily of genes in
Populus can aid the understanding of the molecular mech-
anisms of stress resistance and thus aid in the development
of Populus varieties, using transgenic technology, with a
greater tolerance tomany adverse environments. SomeDREB
subfamily genes have been isolated from rice, Arabidopsis,
and other plants [10], but they have not been isolated from
Populus. Thus, their functions remain to be determined in
Populus. The completion of the high-quality sequencing of
the Populus genome [11] has provided an excellent opportu-
nity for genome-wide analysis of genes belonging to specific
gene families. Therefore, we present a comprehensive and
specific analysis of gene structure, chromosome localization,
and expression of the Populus’ DREB subfamily for the first
time. Here, we identified 75 PtrDREB genes in Populus using
database searches and classified these genes according to their
homology with known genes. We describe DREB subtypes
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Figure 1: Integrated systems analysis workflow for elucidation of
the role of DREB subfamily in the bioinformatics and data analysis
in Populus. A: A phylogenetic analysis was performed using all the
DREB subfamily amino acid sequences from Arabidopsis and Popu-
lus by MEGA 4 software. B: Each of the DREB genes’ chromosomal
position in Populus was using the Phytozome and Joint Genome
Institute websites. C: The exon/intron organization for individual
DREB genes was using the gene structure display server (GSDS)
program and motif analysis was performed using the program
MEME (v4.3.0). D: Gene expression profiling of Populus DREB
subfamily was used to characterize differentially expressed genes.

more specifically and present novel information from differ-
ent tissues and/or developmental stages. Some subtypes of
this gene subfamily were differentially expressed under abi-
otic stress conditions. PtrDREB genes play an important role
in the cross-talk of signaling pathways responding to different
kinds of stress. We analyzed the phylogenetic relationships of
theDREB genes in Populus and attempted the complete align-
ment of the subtypes. We examined gene structure and con-
served motifs ofDREB genes. Taken together, our results will
be helpful in determining the functions of each DREB gene.

2. Materials and Methods

2.1. Database Search and Sequence Retrieval. The P. tri-
chocarpa genome DNA database was downloaded from
Phytozome (http://www.phytozome.net/). The database of
the A. thaliana DREB subfamily was downloaded from
the Arabidopsis Information Resource (TAIR, http://www
.arabidopsis.org/, release 10.0). A local BLAST search was
performed using the amino acid sequences of the AP2/ERF
domains from Arabidopsis as the queries for the identifica-
tion of the DREB genes from Populus. All of the located
sequences were further manually analyzed to confirm the
presence of an AP2 domain using the InterProScan program
(http://www.ebi.ac.uk/Tools/InterProScan/).TheArabidopsis
At4g13040 was used as an outlier.

2.2. Phylogenetic Analysis. A phylogenetic analysis was ini-
tially performed using all the DREB genes from Arabidopsis
and Populus. To construct the phylogenetic trees, full-length
Arabidopsis and Populus amino acid sequences were aligned
using ClustalX 1.83 software [12] and manually edited using
Jalview to reduce gaps [13]. The phylogenetic analysis was
performed by the maximum parsimony method with 1,000
bootstrap replicates using MEGA 4 software [14].
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Figure 2: Relationships among Populus DREBs proteins after alignment with ClustalW. Proteins were allocated to six distinct subgroups of
DREB, A-1 to A-6.

2.3. Chromosome Localization. Each of the DREB genes’
chromosomal position in Populus was identified and plotted
using the Phytozome (http://www.phytozome.net/) and Joint
Genome Institute (http://genome.jgi-psf.org/pages/blast.jsf?
db=Poptr1 1) websites. This information is provided in
Table 2. A schematic view of the chromosomes was reor-
ganized by the most recent whole-genome duplication in
Populus.

2.4. Exon/Intron Structure and Motif Analysis. The exon/
intron organization for individual DREB genes was illus-
trated using the Gene structure display server (GSDS)

program (http://gsds.cbi.pku.edu.cn/). The CDS and genome
sequences of the P. trichocarpa genes were obtained from
NCBI (http://www.ncbi.nlm.nih.gov/). The program MEME
(v4.3.0) (http://meme.sdsc.edu/) was used to deduce 75 Pop-
ulus DREB protein sequences.

2.5. EST Profiling and Microarray Analysis. The expression
profile for each gene was obtained by a Digital Northern
tool at PopGenIE (http://www.popgenie.org/) that generated
a digital northern expression profile heat map based on
the EST representations of 19 cDNA libraries derived from
different tissues and/or developmental stages [15]. The heat
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Figure 3: Locations of P. trichocarpa DREB genes on the chromosomes LGI-XIX. A schematic view of chromosome reorganization by recent
whole-genome duplication in Populus is shown (adapted from [21]). Regions that are assumed to correspond to homologous genome blocks
are shaded in the same color and connected with lines.

map was visualized using the Heatmapper Plus tool at
the Bio-Array Resource for Plant Functional Genomics
(http://bar.utoronto.ca/ntools/cgi-bin/ntools heatmapper
plus.cgi/) [16].Themicroarray data for various tissues/organs
available at NCBIGene ExpressionOmnibus (GEO) database
under the series accession number GSE6422 were used for
the tissue-specific expression analysis.

2.6. Plant Treatment and qRT-PCR Analysis. For expression
pattern analysis of the Populus DREB gene subfamily under
abiotic stresses, plants were exposed to 42∘C for 0, 0.5, and
1 h; 4∘C for 0, 12, and 24 h; 200mM NaCl for 0, 4, and 8 h;
100 𝜇M ABA for 0, 2, 4, and 6 h; and 4% PEG6000 for 0, 4,
and 8 h. Young leaves were harvested at various time points.
All samples were immediately frozen in liquid nitrogen and
stored at −80∘C until RNA isolation.

Total RNA from leaf was extracted using the CTAB
method. Synthesized cDNAs were used for qRT-PCR, which
was performed using the TaKaRa ExTaq RT PCR Kit and
SYBR green dye (TaKaRa, Dalian, China) in 96-well opti-
cal reaction plates (Applied Biosystems, USA). The results
obtained for the different stages were standardized to the
levels of the actin gene using the 2−ΔΔCT method.We selected
15 DREB genes to observe tolerance under stress conditions
in Populus via EST profiling and microarray analysis. We
designed the primers for gene expression analysis using
Primer Premier 5 to produce amplified lengths of 180 to
200 bp (Table 1).

3. Results and Discussion

3.1. Identification of DREB Subfamily TFs in Populus. To
identify putative DREB genes in Populus, we performed a
BLASTP search against Populus genome release v2.1 using
DREB protein sequences from Arabidopsis. By removing
the redundant sequences, 75 DREB genes were identified
in the Populus genome. All DREB candidates were ana-
lyzed using the smart database (http://smart.embl-heidel-
berg.de/smart/set mode.cgi?NORMAL=1) to verify the pres-
ence of AP2/ERF domains. Seventy-five DREB genes were
used for the analysis of bioinformatics and gene expression
profiling.The overall strategy used in this study was depicted
in Figure 1 and presented in detail below. We designated
Populus DREB genes as PtrDREB following the nomenclature
proposed in a previous study [17]. A. thaliana At4g13040 was
used as a query sequence and it includes an AP2/ERF-like
domain sequence; however, its homology appears quite low
in comparison with the other AP2/ERF genes.Therefore, this
gene was also designated as an outlier. Detailed information
on the DREB subfamily of genes in Populus and Arabidopsis
are listed in Table 1.

3.2. Phylogenetic Relationships and Alignments of the DREB
Subfamily in Populus. Based on the alignment of the
AP2/ERF coding region protein sequences of all Populus and
Arabidopsis DREB subfamily genes, 75DREB subfamily genes
of Populuswere classified into six groups, A1, A2, A3, A4, A5,
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Table 2:TheDREB genes identified from theP. trichocarpa genome.

Gene
symbol

Gene
Locus

PF00847
AP2 domain

Arabidopsis
ortholog
locus

PtrDREB1 POPTR 0008s07120 102–151 AT1G12610.1
PtrDREB2 POPTR 0010s19370 147–196 AT1G63030.1
PtrDREB3 POPTR 0006s10510 67–125 AT4G25470.1
PtrDREB4 POPTR 0016s13380 74–132 AT4G25480.1
PtrDREB5 POPTR 0006s05320 28–78 AT4G25490.1
PtrDREB6 POPTR 0016s05360 29–78 AT5G51990.1
PtrDREB7 POPTR 0010s19100 78–128 AT1G75490.1
PtrDREB8 POPTR 0008s07360 78–128 AT2G38340.1
PtrDREB9 POPTR 0005s25470 43–92 AT2G40340.1
PtrDREB10 POPTR 0002s03090 40–89 AT2G40350.1
PtrDREB11 POPTR 0001s32250 285–333 AT3G11020.1
PtrDREB12 POPTR 0017s08250 276–324 AT3G57600.1
PtrDREB13 POPTR 0003s13910 107–155 AT5G05410.1
PtrDREB14 POPTR 0019s13330 232–281 AT5G18450.1
PtrDREB15 POPTR 0013s13920 232–281 AT2G40220.1
PtrDREB16 POPTR 0005s07900 173–222 AT1G01250.1
PtrDREB17 POPTR 0002s09480 163–211 AT1G12630.1
PtrDREB18 POPTR 0007s05690 173–222 AT1G33760.1
PtrDREB19 POPTR 0005s16690 120–168 AT1G63040.1
PtrDREB20 POPTR 0003s17830 7–56 AT1G71450.1
PtrDREB21 POPTR 0001s14720 46–95 AT1G77200.1
PtrDREB22 POPTR 0018s02280 7–56 AT2G25820.1
PtrDREB23 POPTR 0006s27710 7–56 AT2G35700.1
PtrDREB24 POPTR 0018s01680 5–55 AT2G36450.1
PtrDREB25 POPTR 0006s26990 21–71 AT2G44940.1
PtrDREB26 POPTR 0003s02750 5–55 AT3G16280.1
PtrDREB27 POPTR 0006s06870 5–55 AT3G60490.1
PtrDREB28 POPTR 0018s13130 5–55 AT4G16750.1
PtrDREB29 POPTR 0006s08000 22–71 AT4G32800.1
PtrDREB30 POPTR 0007s10750 22–71 AT5G11590.1
PtrDREB31 POPTR 0005s18430 22–71 AT5G25810.1
PtrDREB32 POPTR 0002s12550 35–84 AT5G52020.1
PtrDREB33 POPTR 0014s02530 35–84 AT1G19210.1
PtrDREB34 POPTR 0018s00700 14–63 AT1G21910.1
PtrDREB35 POPTR 0006s14110 14–63 AT1G22810.1
PtrDREB36 POPTR 0005s15830 31–80 AT1G44830.1
PtrDREB37 POPTR 0002s08610 26–76 AT1G46768.1
PtrDREB38 POPTR 0019s10220 29–78 AT1G71520.1
PtrDREB39 POPTR 0013s10420 20–70 AT1G74930.1
PtrDREB40 POPTR 0018s08320 18–68 AT1G77640.1
PtrDREB41 POPTR 0006s23480 23–73 AT2G23340.1
PtrDREB42 POPTR 0006s14090 16–66 AT3G50260.1
PtrDREB43 POPTR 0006s14100 16–66 AT4G06746.1
PtrDREB44 POPTR 0001s18180 15–65 AT4G31060.1
PtrDREB45 POPTR 0013s10340 14–64 AT4G36900.1
PtrDREB46 POPTR 0019s10420 11–62 AT5G21960.1

Table 2: Continued.

Gene
symbol

Gene
Locus

PF00847
AP2 domain

Arabidopsis
ortholog
locus

PtrDREB47 POPTR 0003S05300 16–66 AT5G67190.1
PtrDREB48 POPTR 0013s10330 49–99 AT1G36060.1
PtrDREB49 POPTR 0019s10430 15–65 AT1G64380.1
PtrDREB50 POPTR 0019s09530 36–84 AT1G78080.1
PtrDREB51 POPTR 0014s09540 38–88 AT2G22200.1
PtrDREB52 POPTR 0855s00200 20–68 AT4G13620.1
PtrDREB53 POPTR 0002s17330 20–68 AT4G28140.1
PtrDREB54 POPTR 0006s02180 44–93 AT4G39780.1
PtrDREB55 POPTR 0016s02010 50–98 AT5G65130.1
PtrDREB56 POPTR 0015s13840 84–132 AT1G22190.1
PtrDREB57 POPTR 0012s13880 115–163 AT4G13040.1
PtrDREB58 POPTR 0003s12120 14–61
PtrDREB59 POPTR 0001s08740 14–61
PtrDREB60 POPTR 0009s14990 57–108
PtrDREB61 POPTR 0004s19820 59–110
PtrDREB62 POPTR 0001s08710 66–116
PtrDREB63 POPTR 0001s08720 62–111
PtrDREB64 POPTR 0012s13870 85–135
PtrDREB65 POPTR 0015s13830 79–129
PtrDREB66 POPTR 0002s14210 94–143
PtrDREB67 POPTR 0003s07700 96–146
PtrDREB68 POPTR 0001s15550 71–122
PtrDREB69 POPTR 0003s04920 87–137
PtrDREB70 POPTR 0001s18800 54–103
PtrDREB71 POPTR 0018s09270 69–119
PtrDREB72 POPTR 0006s17670 67–117
PtrDREB73 POPTR 0006s25500 59–109
PtrDREB74 POPTR 0018s00270 59–109
PtrDREB75 POPTR 0014s05500 90–139

and A6, containing six, 17, two, 26, 15, and nine members,
respectively. The phylogenetic trees of the DREB subfamilies
of Populus and Arabidopsis are shown in Figure 2. The align-
ment analysis indicates that DREBs share high homology in
the AP2/ERF domain (see Supplementary Figure 1; available
online at http://dx.doi.org/10.1155/2013/954640) and contain
a conserved WLG motif in the AP2/ERF domain of Populus.
In the proteins encoded by DREBs, position 14 is normally
valine and position 19 is glutamic acid. This region may
play an important role in the recognition of different DNA-
binding sites by the DRE and GCC box cis-elements of the
DREB subfamily [3]. Also, the DREBs contain alanine at
position 319 in the 𝛽-sheet. Group A-1 possesses a conserved
C/SEV/LR amino acid sequence between V319 and E324, and
this region is converted into an AEIR amino acid sequence in
groups A-2, A-3, and A-6. In Group A-4, Ser-324 is crucial for
the specific binding of the ERE element, and Ser-324/Ala-324
is crucial in Group A-5.
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3.3. Chromosomal Locations of DREB Subgroups. To exam-
ine the genomic distribution of DREB genes on Populus
chromosomes, we identified their positions by a Phytozome
database search. In silico mapping of the gene loci showed
that 75 Populus DREB genes were mapped to linkage groups
(LG) (Figure 3). Previous studies revealed that the Populus
genome has undergone genome-wide duplications followed
bymultiple segmental duplications, tandemduplications, and
transposition events [18]. It was very clear that three pairs of
geneswere arranged in tandem repeats, LG I (PtrDREB63 and
64), LG II (PtrDREB52 and 53), and LG VI (PtrDREB43 and
42), and 18 pairs of genes were duplicated. The dN/dS ratios
from the 18 segmental duplication pairs were less than 0.5.
About 56% (42 of 75) of Populus DREBs were preferentially
retained tandem duplications and multiple segmental dupli-
cation events. Tandem duplications and segmental duplica-
tions were relatively underrepresented in groups A-1 to A-6
with rates of 67% (4 of 6), 47% (8 of 17), 100% (2 of 2), 53%
(14 of 26), 40% (5 of 15), and 89% (8 of 9), respectively. This
finding corroborates previous findings that genes involved
in transcriptional regulation and signal transduction are
preferentially retained following duplications [19].

3.4. Gene Structure and Conserved Motifs of Populus DREB
Genes. To gain further insights into the structural diversity
of Populus DREB genes, we constructed a phylogenetic
tree using the full-length DREB protein sequences of Pop-
ulus (Figure 4(a)). We compared the exon/intron organiza-
tion in the coding sequences of each Populus DREB gene
(Figure 4(b)). All but nine Populus DREB members had no
introns in their coding regions and the nine Populus DREB
genes had one intron (PtrDREB60, 61, 62, 24, 25, 26, 27, 28,
and 3). We predicted conserved motifs using MEME motif
detection software that revealed the diversification of the P.
trichocarpa DREB genes (Figure 4(c)), and 15 distinct motifs
were identified (Table 3). The AP2/ERF domain consists of
three 𝛽-sheet and one 𝛼-helix at the N termini [20, 21].
In this study, motif 3, specifying 𝛽-sheet strand 1; motif 1,
specifying 𝛽-sheet strand 2 and 3; andmotif 2, corresponding
to the 𝛼-helix, were present in all of the Populus’ DREB
subfamily members. The CBF signature sequences (motif 14)
were found in DREB Group A-1 [20, 21]. Alignment of the
deduced amino acid sequences of Arabidopsis DREB Group
A-1 TFs demonstrated significant similarity in the AP2/ERF
binding domain and the CBF signature sequences [22].These
results suggest that the P. trichocarpa DREB Group A-1 share
remarkable similarities at the amino acid sequence level with
known CBF/DREB proteins of Arabidopsis and carry critical
amino acids that are needed for binding to the CRT elements
in the target genes. The CMIV domain (motif 7) was found
in the DREB Group A-2. Alignment of the deduced amino
acid sequences of Arabidopsis DREB Group A-2 TFs in the
N-terminal region included the conserved motif CMIV-1
and the DNA-binding domain [23]. These results suggest
that most of the closely related members in the phylogenetic
tree shared a common motif composition with each other,
suggesting functional similarities among the DREB proteins
within the same subfamily.

Table 3: Motif sequences ofDREB genes identified in P. trichocarpa
by MEME tools.

Motif Width Best possible match
1 21 WGKWVCEIREPRKKSRIWLGT
2 24 FPTPEMAARAHDVAALCIKGDSAI
3 11 KHPVYRGVRMR
4 21 LPVPASTSPRDIQAAAASAAA
5 8 LNFPDLVH
6 25 EEALFDMPNLLVDMAGGMLLSPPRI
7 29 GDGGNKPVRKVPAKGSKKGCMKGKGGPEN
8 15 EDHHIEQMIEELLDR
9 18 YKPLHSSVDAKLQAICQS
10 25 HIGVWQKKAGSRSSSNWVMKVELGN
11 15 GPITVRLSPSQIQAI
12 30 DMSAASIRKRATEVGAHVDAIETALNHHHH
13 29 STSSLTSLVSLMDLSSQEEELCEIVELPS
14 21 EVMLASRNPKKRAGRKKFRET
15 21 FESGNFMLQKYPSYEIDWASI

3.5. EST Profiling and Microarray Analysis. The expression
profile for each gene was obtained by the Digital Northern
tool, which generates a digital northern expression profile
heat map based on the ESTs, and is a useful additional
means of inferring gene function by examining expression
patterns based on the frequency of ESTs in libraries prepared
from various tissues [15] (Figure 5). Such analysis yielded 32
PopulusDREB genes in the available cDNA libraries. Of the 32
DREBs examined, 16 genes in the digital expression analysis
had high transcript accumulation. A comparison of the
digital northern expression analysis revealed that PtrDREB16
and 63 had high transcript accumulation in flower buds, Ptr-
DREB51 in apical shoots, PtrDREB24, 25, and 51 in petioles,
PtrDREB39 and 65 in dormant buds, PtrDREB33 and 69 in
senescing leaves, PtrDREB11 and 30 in roots, PtrDREB37 in
active cambium, PtrDREB71 in shoot meristem, PtrDREB13,
16, and 49 in female catkins, PtrDREB36 in bark, and Ptr-
DREB13 in imbibed seeds. On the whole, the remaining genes
had low transcript accumulation in the different libraries
examined. The low-abundance TFs had relatively low EST
frequencies [24] and most of the DREBs were represented
by only one single EST in the cDNA libraries. Nevertheless,
this expression analysis demonstrated thatmost of theDREBs
have a broad expression pattern across different tissues.

To gainmore insights into the expression profiles ofDREB
genes, we then reanalyzed the previously published microar-
ray data inPopulus.We first investigated the global expression
profiles of DREB genes by examining Affymetrix (GSE6422)
[25] microarray data from Gene Expression Omnibus.
Seventy-five DREB genes were included in GSE6422, and the
DREB genes showed a distinct tissue-specific expression pat-
tern (Figure 6). A comparison of the different tissues revealed
that PtrDREB13, 15, 33, 51, and 53were overrepresented, how-
ever PtrDREB23 and 28 were under-represented in mature
leaves. PtrDREB13, 27, 28, 67, and 69 were over-represented,
however PtrDREB30 was under-represented in young leaves.
PtrDREB20, 30, 49, 70, and 74 were over-represented in
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Figure 4: Phylogenomic analysis of 75DREB genes in P. trichocarpa (a) with the integration of exon/intron structures (b) andMEMEmotifs
(c). Exon/intron structure was obtained from the Gene Structure Display Server. Motifs were identified with the MEME software using the
complete amino acid sequences of the DREB genes.

internodes. PtrDREB28, 73, and 74 were over-represented in
nodes. PtrDREB7, 11, and 18 were over-represented, however
PtrDREB28 was under-represented in roots. On the whole,
the remaining genes showed low-abundance transcription
levels in the different tissues. EST profiling and microarray
analysis showed that PtrDREB28, 73, 74, 37, and 71 had
high-abundance transcripts in the cambium. Previous studies
using genome-wide transcriptional profiling in Arabidopsis
revealed that stress-related and touch-inducible genes are
upregulated in stem regions where secondary growth takes
place [26].

3.6. Expression of DREBGenes under Abiotic Stress Conditions
in Populus. Studies have previously been conducted to eval-
uate the expression of the DREB Populus genes in response
to stresses such as low temperature, high temperature, salt,
and dehydration [7]. However, the genes that were evaluated
in our study were predicted to be candidate genes in Populus
via EST profiling andmicroarray analysis.We have quantified
the expression levels of the genes in leaf tissue after exposure
to different abiotic stress conditions. The results provide
an abundant set of information regarding the expression of

these genes in Populus in response to low temperature, high
temperature, ABA, salt, and dehydration (Figure 7). Among
15 selected DREB genes, there was evidence of induced
expression under different abiotic stresses conditions, with
the exception of PtrDREB30.

PtrDREB60, 61, and 62, which belong to theA-1 subgroup,
were stress-inducible by low temperature, salt, and dehydra-
tion (Figure 7). In addition, PtrDREB62 was stress-inducible
by high temperature and PtrDREB60 was stress-inducible by
ABA. These findings are consistent with those of Dubouzet
et al. (2003), who reported the increased expression of an A-1
subgroup gene (OsDREB1) of rice [10]. It was a major regula-
tor of cold-stress responses in theDREB1/CBF (A-1) subgroup
[7]. In a recent study, they indicated that ethylene signaling
plays a negative role in the adaptation ofArabidopsis to freez-
ing stress [26]. Additionally, some studies indicated that the
AmCBF2 was inducible by heavy metals (Pb2+ or Zn2+) [4].

PtrDREB4 and PtrDREB28 belong to the A-2 subgroup
(Figure 7), and they were stress-inducible by ABA, salt, and
dehydration. In addition, PtrDREB28 was stress-inducible
by high temperature and low temperature. This finding is
consistent with those of Dubouzet et al. (2003) [10], who
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Figure 5: In silico EST analysis of Populus DREB genes. Color bar at bottom represents the frequencies of EST counts. FB: flower buds, MC:
male catkins, CZ: cambial zone, TW: tension wood, AS: apical shoot, R: roots, CSL: cold stressed leaves, DB: dormant buds, DC: dormant
cambium, SL: senescing leaves, P: petioles, AC: active cambium,YL: young leaves, FC: female catkins, SM: shootmeristem, B: bark, IS: imbibed
seeds. Gene names are shown on the left.

reported increased expression of an A-2 subgroup gene
(MsDREB2C) of Malus sieversii Roem [27]. It was a major
regulator of dehydration and heat shock responses in the
DREB2 subgroup [7]. This indicated that ethylene signaling
plays a negative role in the adaptation ofArabidopsis to freez-
ing stress [26]. The oxidative stress tolerance of DREB2C-
overexpressing transgenic Arabidopsis plants was regulated
by heat shock factor A3 (HsfA3) andHsfA3 is regulated at the
transcriptional level by DREB2 [28].

PtrDREB51, 55, and 68 belong to the A-4 subgroup,
and they were stress-inducible by salt and dehydration.
However, PtrDREB51, 55, and 68 were down represented
by high temperature PtrDREB68 was down represented by
low temperature. Genes PtrDREB30, 32, and 38 belonged
to subgroup A-5. PtrDREB32 was stress-inducible by cold
and ABA, whereas PtrDREB38 was induced by hot and cold
temperatures. PtrDREB30 was down represented by high

temperature, whereas PtrDREB38 was down represented by
salt. PtrDREB16, 17, 18, and 19 belonged to the A-6 subgroup.
PtrDREB16 was induced by drought and high salt, and
PtrDREB17 was induced by drought, high temperature, low
temperature, and ABA treatment. PtrDREB18 was induced
by high temperature, low temperature, and ABA. In addition,
PtrDREB19was only induced by low temperature. PtrDREB18
was down represented by by salt, whereas PtrDREB16 was
down represented by high temperature and cold temperature
(Figure 7). In our study, a digital northern analysis showed
that the genes PtrDREB17, 18, and 32 were expressed in
cold-stressed leaves, and showed the same expression trends
based on qRT-PCR.The expression patterns of Populus DREB
genes detected by qRT-PCR are generally consistent with
microarray analyses and digital northern analyses.

Some studies indicate that theHARDY (At2g36450) gene
belongs to the A-4 subgroup. The overexpression of the
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Figure 6: Expression profiles of Populus DREB genes across different tissues. Heat map showing hierarchical clustering of 75 PtrDREB genes
across various tissues analyzed.The Affymetrix microarray data were obtained fromNCBI Gene Expression Omnibus (GEO) database under
the series accession numberGSE16422.ML:mature leaf; YL: young leaf; R: root; I: internodes; N: nodes. Color scale represents log2 expression
values, green represents low level, and red indicates high level of transcript abundances.

HRD gene for the improvement of water-use efficiency is
coincident with drought resistance in rice. The analogous
genes At2g36450 and PtrDREB68 were stress-inducible in
drought [29]. The homologous genes, RAP2.4 (At1g78080)
and PtrDREB19 and RAP2.4B (AT1G22190) and PtrDREB17,
were expressed in response to dehydration, high salinity, and

heat [30, 31]. Overexpression or mutation of RAP2.4 and
RAP2.4B in Arabidopsis acts at or downstream of a point of
convergence for light and ethylene signaling pathways that
coordinately regulates multiple developmental processes and
stress responses [30]. It is noteworthy that the expression of
several other genes associated with lipid transport was altered
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Figure 7: Expression analysis of fifteen selected P. trichocarpaDREB genes in mature leaves under ABA (a), drought stresses (b), salinity (c),
high temperature (d), and low temperature (e) by qRT-PCR.The data were normalized using the P. trichocarpa actin gene. Standard deviations
were derived from three replicates of each experiment.

in theRAP2.4 andRAP2.4B overexpression lines, further sup-
porting the link between DREB TFs and adaptive alterations
in lipid metabolism [31]. Hence, we think that the PtrDREB16
and 17 TFs are probably associated with enhanced drought
tolerance by modulating the wax biosynthetic pathway.

4. Conclusions

Understanding the plant DREB subfamily is important for
elucidating the mechanisms of a variety of stress responses.
Therefore, we present a comprehensive and specific analysis
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of gene structure, chromosome localization, and expression
of the Populus DREB subfamily for the first time. We pre-
dicted P. trichocarpa DREB gene expression and function
through comparisons with similar genes that have been
well studied in model or other plants. The chromosomal
localizations of the PtrDREB genes involved in transcription
regulation and signal transduction are preferentially retained
following duplications. The conserved motif composition of
PtrDREB genes were highly conserved in the same subtype.
EST profiling and microarray analysis of this gene subfamily
from different tissues and/or developmental stages showed
the same expression trends based on qRT-PCR.The results in
the present study indicate that DREBs function as important
transcriptional activators and may be useful in improving
plant tolerance to abiotic stresses. Taken together, these
observations may lay the foundation for future functional
analyses of Populus DREB genes to unravel their biological
roles.
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